応用情報技術者試験過去問を解いてみた R6年度 春期 問1 ベイズの定理

はじめに

応用情報技術者試験の過去問を解いていきます。

今回は、R6年度春季の過去問を解いていきたいと思います。
本問は「ベイズの定理」がテーマの問題です。


問題(応用情報技術者試験過去問 R6年度 春期 問1)

複数の袋からそれぞれ白と赤の玉を幾つかずつ取り出すとき、ベイズの定理を利用して事後確率を求める場合はどれか。

  • ア:ある袋から取り出した二つの玉の色が同じと推定することができる確率を求める場合
  • イ:異なる袋から取り出した玉が同じ色であると推定することができる確率を求める場合
  • ウ:玉を一つ取り出すために、ある袋が選ばれると推定することができる確率を求める場合
  • エ:取り出した玉の色から、どの袋から取り出されたのかを推定するための確率を求める場合

解答

正解:エ


解説

「ベイズの定理」は、観測した結果(例えば赤玉が出た)から、その原因(どの袋から出たか)を逆向きに推定する方法です。
今回の選択肢のうち「エ」だけがこの形に当てはまります。

他の選択肢の解説

選択肢何を求めている?どの区域(どんな種類の確率?)ベイズの定理が必要?
袋が決まっていて、その中の玉がどう出るか事象内の組み合わせ確率
袋もバラバラ → 玉が同じ色か?全体の単純な出現確率
袋を選ぶ前 → ある袋が選ばれる確率事前確率(そもそも袋が選ばれる確率)
玉の色(結果)から → どの袋だったかを逆推定事後確率(結果→原因)ベイズの定理!

問題の用語解説

ベイズの定理とは?

  • 「ある事象が起きたあとで、原因が何だったか?」を推定するための確率法則
  • 例:検査陽性 → 病気かどうか、赤玉 → 袋の推定など

ベイズの定理の公式

P(原因∣結果)=P(結果∣原因)×P(原因)/P(結果)

  • P(原因∣結果):結果が出たとき、原因だった確率(事後確率
  • P(結果∣原因):原因だった場合に結果が出る確率
  • P(原因)P(原因):原因が起きる事前確率
  • P(結果)P(結果):全体で結果が出る確率

🌟 例:風邪と咳の関係で説明

状況

  • 全体の人の中で
    5% の人が風邪をひいている(=P(風邪) = 0.05)
  • 風邪の人は 90% の確率で咳が出る(=P(咳 | 風邪) = 0.9)
  • 健康な人(風邪でない人)は 10% の確率で咳が出る(=P(咳 | 健康) = 0.1)

図で示すと下記の通り


今回の問い

ある人が「咳をしている」とき、
→ その人が 風邪をひいている確率 は?


🌟 式に当てはめてみる

P(風邪∣咳)=P(咳∣風邪)×P(風邪)/P(咳)

このままでは P(咳) がわからないのでまず求めます。


P(咳)の計算

咳をしている人は:

  • 風邪の人が咳する確率 → 0.9 × 0.05 = 0.045
  • 健康な人が咳する確率 → 0.1 × 0.95 = 0.095

全体で咳が出る確率は:

P(咳)=0.045+0.095=0.14


事後確率の計算

P(風邪∣咳)=0.9×0.05/0.14=0.045/0.14≈0.321


🌟 結果

咳をしている人が「風邪である確率」は 約32%


🌟 ポイントまとめ

部分具体例
P(原因)P(風邪) = 0.05
P(結果原因)
P(結果)P(咳) = 0.14(風邪の人と健康な人の両方から計算)
求めたいものP(風邪

💡 つまり

  • 風邪ひきの人は5%しかいない → もともと少ない(P(原因)が低い)
  • 咳してるだけで「風邪だ!」と思うのは早い
  • 咳の出現だけでは 32% の確率しか風邪ではない

こういう風に
観測結果(咳) → 原因(風邪)の逆向き推定 にベイズの定理が使われます ✨

事後確率とは?

  • 何か結果が分かった後で「本当はどうだったのか」の確率

体系的位置づけ

概念レベル内容
確率・統計確率論
推定手法ベイズの定理(事後確率の推定)
試験分野応用情報技術者試験 → テクノロジ系 → 数理・統計分野

なぜ応用情報技術者試験で出題されるのか?

応用情報技術者試験では、ITの現場で使われる理論や知識を実務目線で問う という意図があります。
その中で「確率的な推論」がAIやセキュリティ分野で非常に重要だからです。


具体例

  • スパムメールの判定
    → メールの特徴(観測)から「スパムかどうか(原因)」を逆向きに推定
  • 医療AI
    → 検査結果(観測)から「患者が病気であるかどうか(原因)」を推定
  • 異常検知
    → ある設備のセンサーデータ(観測)から「異常が発生しているか(原因)」を逆向きに推定

まとめ

「ベイズの定理」は「結果 → 原因の推定」という非常に重要な考え方です。
応用情報技術者試験でも出題されていることからも、基本的な理解はぜひ押さえておきたいところです。

実際のAIや医療・セキュリティの分野でも、この考え方が基礎になっている場面がとても多いので、
「公式の丸暗記」ではなく 仕組みや考え方そのもの を理解しておくと良いでしょう。


参考情報

  • IPA 応用情報技術者試験 過去問題:
    https://www.ipa.go.jp/shiken/mondai-kaiotu/2024r06.html

コメント

タイトルとURLをコピーしました